

Mark Scheme (Results)

October 2020

Pearson International Advanced Level In Chemistry (WCH15) Paper 1: Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020 Publications Code WCH15_01_2010_MS All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question number	Answer	Mark
1	The only correct answer is B (-210)	(1)
	A is incorrect because this is the stabilisation energy of benzene	
	<i>C</i> is incorrect because this is the enthalpy change of hydrogenation for three C=C	
	D is incorrect because this is 150 kJ mol ⁻¹ less stable than three C=C	

Question number	Ans	wer	Mark
2	The	only correct answer is A (p orbitals, π bond)	(1)
	В	is incorrect because a σ bond is not present in the ring of delocalised electrons	
	С	is incorrect because s and p orbitals do not overlap to form the ring of delocalised electrons	
	D	is incorrect because s and p orbitals do not overlap and a σ bond is not formed in the ring of delocalised electrons	

Question number	Answer	Mark
3	The only correct answer is C (ethanoyl chloride and aluminium chloride)	(1)
	A is incorrect because ethanal does not react with benzene	
	B is incorrect because ethanal does not react with benzene	
	D is incorrect because the catalyst is incorrect	

Question number	Answer	Mark
4	The only correct answer is A	(1)
	CH ₂ Cl	
	B is incorrect because chlorine does not substitute into the benzene ring in the presence of ultraviolet light	
	<i>C</i> is incorrect because chlorine does not substitute into the benzene ring in the presence of ultraviolet light	
	D is incorrect because chlorine does not substitute into the benzene ring in the presence of ultraviolet light	

Question number	Ans	wer	Mark
5	The	only correct answer is C (6)	(1)
	Α	is incorrect because the NO ₂ groups can be on carbon atoms (2,3), (2, 4), (2,5), (2, 6), (3, 4) and (3,5) relative to the OH group	
	В	is incorrect because the NO2 groups can be on carbon atoms (2,3), (2, 4), (2,5), (2, 6), (3, 4) and (3,5) relative to the OH group	
	D	is incorrect because the NO2 groups can be on carbon atoms (2,3), (2, 4), (2,5), (2, 6), (3, 4) and (3,5) relative to the OH group	

Question number	Answer	Mark
6	The only correct answer is C (2.98 g)	(1)
	A is incorrect because the mass of phenyl ethanoate has been multiplied by 0.85 instead of divided by 0.85	
	B is incorrect because this is the mass of phenol if the yield is 100% yield	
	D is incorrect because this is the mass of phenyl ethanoate produced from 3.67 g of phenol	

Question number	Answer	Mark
7	The only correct answer is B (C7H8)	(1)
	A is incorrect because this contains 92.3% carbon	
	C is incorrect because this contains 90.6% carbon	
	D is incorrect because this contains 90.0% carbon	

Question number	Answer	Mark
8	The only correct answer is D $((C_2H_5)_2NH_2^+Cl^-)$	(1)
	A is incorrect because this compound would not be formed from ethylamine and chloroethane	
	B is incorrect because this compound is formed when hydrochloric acid is added to ethylamine	
	<i>C</i> is incorrect because this compound is formed when ethanoyl chloride is added the ethylamine	

Question number	Answer	Mark
9	The only correct answer is D (HOOCC ₆ H ₄ COOH and HOCH ₂ CH ₂ OH)	(1)
	A is incorrect because the dicarboxylic acid and the dialcohol are the wrong way around	
	B is incorrect because the dicarboxylic acid and the dialcohol are the wrong way around and there are too many carbon atoms	
	<i>C</i> is incorrect because each monomer must have the same two functional groups to form this polymer	

Question number	Answer	Mark
10	The only correct answer is B (4)	(1)
	A is incorrect because the 1 st and 6 th amino acids are the same, the 2 nd is different, the 3 rd and 5 th are the same and the 4 th is different	
	C is incorrect because the 1 st and 6 th amino acids are the same, the 2 nd is different, the 3 rd and 5 th are the same and the 4 th is different	
	D is incorrect because the 1 st and 6 th amino acids are the same, the 2 nd is different, the 3 rd and 5 th are the same and the 4 th is different	

Question number	Answer	Mark
11	The only correct answer is B (ethanal)	(1)
	A is incorrect because carbon dioxide produces a carboxylic acid	
	C is incorrect because methanal produces a primary alcohol	
	D is incorrect because propanone produces a tertiary alcohol	

Question number	Answer	Mark
12	The only correct answer is B	(1)
	A is incorrect because this isomer gives 3 peaks	
	C is incorrect because this isomer gives 5 peaks	
	D is incorrect because this isomer gives 2 peaks	

Question number	Answer	Mark
13	The only correct answer is C (C ₁₁ H ₁₄ O)	(1)
	A is incorrect because there are 6 carbon atoms in the ring, 3 in the side-chain on the left and 2 in the side chain on the right	
	B is incorrect because there are 6 carbon atoms in the ring, 3 in the side-chain on the left and 2 in the side chain on the right	
	D is incorrect because there are no hydrogen atoms on the carbon atoms in the ring where there are side-chains	

Question number	Answer	Mark
14	The only correct answer is A (N ₂ O ₅)	(1)
	B is incorrect because Br has oxidation number +5 and Mn has oxidation number +7	
	<i>C</i> is incorrect because Br has oxidation number +5 and Fe has oxidation number +6	
	D is incorrect because Br has oxidation number +5 and S has oxidation number +4	

Question number	An	swer	Mark
15	The	e only correct answer is A ($Cr_2O_7^{2-}$ + 2C \rightarrow Cr_2O_3 + CO_3^{2-} + CO)	(1)
	В	is incorrect because chromium has oxidation number +6 in the reactant and product and no other atom is changing oxidation number	
	С	is incorrect because chromium has oxidation number +6 in the reactant and product and no other atom is changing oxidation number	
	D	is incorrect because chromium has oxidation number +6 in the reactant and product and no other atom is changing oxidation number	

Question number	Answer	Mark
16	The only correct answer is C (+6)	(1)
	A is incorrect because the maximum oxidation state occurs when all the 3d and 4s electrons are used in bonding	
	B is incorrect because the maximum oxidation state occurs when all the 3d and 4s electrons are used in bonding	
	D is incorrect because the maximum oxidation state occurs when all the 3d and 4s electrons are used in bonding	

Question number	An	swer	Mark
17	Th	e only correct answer is D ($NH_{4^{+}}$)	(1)
	A	is incorrect because CH_3NH_2 has a lone pair of electrons that can form a dative covalent bond	
	В	is incorrect because CN $^-$ has a lone pair of electrons that can form a dative covalent bond	
	С	is incorrect because NH $_3$ has a lone pair of electrons that can form a dative covalent bond	

Question number	Ans	swer	Mark
18	18 The only correct answer is D (coordination number 6, overall charge 4–)		(1)
	A	is incorrect because the coordination number should be 6 as there are 6 dative covalent bonds and the ions are Ni^{2+} , two Cl^- and two $C_2O_4^{2-}$, giving an overall charge of 4–	
	В	is incorrect because the coordination number should be 6 as there are 6 dative covalent bonds and the ions are Ni^{2+} , two Cl^- and two $C_2O_4^{2-}$, giving an overall charge of 4–	
	С	is incorrect because the coordination number should be 6 as there are 6 dative covalent bonds and the ions are Ni ²⁺ , two Cl ⁻ and two C ₂ O ₄ ²⁻ , giving an overall charge of 4–	

Question number	Ans	wer	Mark
19	The	only correct answer is C (36.7 cm ³)	(1)
	A	is incorrect because the ratio of oxidation numbers, 4:7, has been used and the mole ratios of MnO₄⁻:Fe²+ should be used	
	В	is incorrect because the mole ratio of 5:3 has been used the wrong way around	
	D	is incorrect because the ratio of 7:4 has been used and the mole ratios of MnO_4^- :Fe ²⁺ should be used	

Question number	Answer	Mark
20	The only correct answer is C (0.15 (mol dm ⁻³))	(1)
	A is incorrect because this is the concentration with respect to $Cr_2(SO_4)_3$	
	B is incorrect because this is the concentration with respect to chromium ions	
	D is incorrect because this is the total concentration of all ions	Soction A = 20 mark

Total for Section A = 20 marks

.

Section B

Question number	Answer		Additional guidance	Mark
21(a)	 (A Salt bridge containing a solution of) potassium nitrate / KNO₃ 	1)	Ignore any conditions, including concentrations Allow potassium chloride / KCl / sodium nitrate / NaNO ₃ / sodium chloride / NaCl Allow ammonium salts	(3)
	 (B Electrode made of) platinum / Pt (C Solution containing) iron(II) and iron(III) ions / Fe²⁺ and Fe³⁺ (ions) 	1) 1)	Do not award iron Allow soluble compounds of iron(II) and iron(III) e.g. chlorides, nitrates or sulfates Ignore acid	

://xtremepa	Question number	Answer
pe.rs/	21(b)	half-equation
		• half-equation

Question number	Answer	Additional guidance	Mark
21(b)	• half-equation for bismuthate ions (1)	Examples of equations: BiO ₃ ⁻ + 6H ⁺ + 2e ⁻ \rightarrow Bi ³⁺ + 3H ₂ O Allow half-equation written in reverse	(3)
	• half-equation for manganate(VII) ions (1)	$Mn^{2+} + 4H_2O \rightarrow MnO_4^- + 8H^+ + 5e^-$ Allow -5e ⁻ on left Allow half-equation written in reverse	
	• overall equation (1)	Stand alone mark $2Mn^{2+} + 5BiO_3^- + 14H^+ \rightarrow 2MnO_4^- + 5Bi^{3+} + 7H_2O$ Overall equation must be written in direction shown Allow multiples Do not award uncancelled electrons / H ⁺ / H ₂ O Allow \Rightarrow in equations Ignore state symbols even if incorrect	

Question number	Answer		Additional guidance	Mark
21(c)	 substitution of values into formula calculation of <i>E</i> 	(1) (1)	Example of calculation: $E = -0.74 + \frac{8.31 \times 298}{96500 \times 3} \times \ln 0.0100$ 96500×3 E = -0.77939 / -0.7794 / -0.779 / -0.78 (V) TE on incorrect numbers in correct formula e.g. if [Cr ³⁺] = 0.100, $E = -0.76$ (V) No TE on incorrect formula Ignore SF except 1 SF Ignore units, even if incorrect Correct answer with no working scores (2)	(2)

(Total for Question 21 = 8 marks)

Question number	Answer	Additional guidance
22(a)(i)	An answer that makes reference to the following points:	Allow the changes in any order Allow the changes shown in diagrams / amended diagrams in the question Penalise any additional incorrect changes
	 the curly arrow should go (from the benzene ring/ π bond / delocalised electrons / inside the hexagon and) towards the nitrogen / NO₂⁺ 	Allow first arrow must be reversed Ignore just 'the curly arrow is incorrect'
	• the open end of the 'horseshoe' should be pointing towards the tetrahedral carbon / carbon with 4 bonds (1)	
	• the curly arrow should start from the (C-H) bond (1)	Ignore just 'the curly arrow should not start from the hydrogen atom' / ' the curly arrow is incorrect' Ignore use of ion / molecule for hydrogen atom

Question number	Answer	Additional guidance	Mark
22(a)(ii)	• tin and (concentrated) hydrochloric acid / (concentrated) HCl((aq))	Allow just 'HCl' for hydrochloric acid Allow iron and (concentrated) hydrochloric acid / (concentrated) HCl((aq)) Ignore addition of sodium hydroxide / NaOH / alkali added after the acid Ignore mention of heat / catalyst Do not award dilute acid / sulfuric acid / nitric acid	(1)

Mark

(3)

Question Number	Answer		Additional guidance	Mark
22(b)(i)	An explanation that makes reference to the following			(3)
	points:			
	• the lone pair (of electrons) on the nitrogen atom	(1)	Allow pair of electrons for lone pair Allow lone pair on the amine / NH2 group	
	 overlaps with π cloud / delocalised electrons / delocalised system or interacts with (benzene) ring / delocalised electrons / delocalised system 	(1)	Allow increases the electron density in the (benzene) ring / feeds into the delocalised electrons or decreases the electron density on the nitrogen atom	
	 so the nitrogen atom is less able to accept a hydrogen ion / H⁺ / proton 	(1)	Allow the lone pair (of electrons) is less available to accept a hydrogen ion / H ⁺ / proton Allow nitrogen is less able to donate electrons to a hydrogen ion / H ⁺ / proton Allow lone pair is less available to form a dative bond with an acid Allow phenylamine for nitrogen Allow ammonia is more able to accept a hydrogen ion / H ⁺ / proton	

Question Number	Answer	Additional guidance	Mark
22(b)(ii)	A description that makes reference to the following point: a (pale) blue precipitate forms 	Allow any shade of blue Ignore reference to precipitate dissolving Ignore original colour of solution Do not award any other colours with blue e.g. blue-green	(1)

Question number	Answer		Additional guidance	Mark
22(c)(i)	 sodium nitrite / sodium nitrate(III) / NaNO₂ and hydrochloric acid / HCl at 5°C / between 0 and 10°C 	(1)	Allow nitrous acid / HNO ₂ / HONO and hydrochloric acid / HCl Ignore concentration of acid Do not award sodium nitrate / NaNO ₃ / nitric ((V)) acid / HNO ₃ Stand alone mark Allow any temperature or range of temperatures within the range 0 and 10°C / less than any temperature within that range Allow ice-bath	(2)

Question number	Answer	Additional guidance	Mark
22(c)(ii)		Examples of structure:	(1)
	correct structure	Na+ -0O-Na+	
		or HOOH	
		Allow ONa with no charges	
		Allow O ⁻	
		Do not award bond between O and Na i.e. O-Na / OH-C / additional atoms bonded to benzene	

Question number	Answer	Additional guidance	Mark
22(c)(iii)	• there is restricted rotation around N=N / the nitrogen bridge /	Allow no rotation around N=N / the double bond Ignore just 'two different groups on N atoms'	(1)
	the azo bridge / nitrogen π bond (and the lone pair of electrons on nitrogen)	Do not award the molecule does not rotate Do not award restricted / no rotation around C=C	

Question number	Answer	Additional guidance	Mark
22(d)	• other optical isomer	Example of optical isomer:	(1)
		The groups must be joined in the correct bonds around the central carbon atom but ignore the connectivity of the groups Allow the mirror images of the symbols Allow subscripts the other side of the symbols e.g. ${}_{5}H_{6}C_{2}HC$	

(Total for Question 22 = 13 marks)

Question number	Answer	Additional guidance	Mark
23(a)	 expression for volume of oxygen reacting with CH₄ (1) 	Example of calculation: Let x cm ³ be the volume of methane CH ₄ + 2O ₂ \rightarrow CO ₂ + 2H ₂ O x cm ³ of CH ₄ reacts with 2x cm ³ of O ₂	(4)
	• expression for volume of oxygen reacting with C_2H_6 (1)	$\begin{array}{rcl} C_2H_6 + 3\frac{1}{2}O_2 & \rightarrow & 2CO_2 & + & 3H_2O \\ (25 - x) \ cm^3 \ C_2H_6 \ reacts \ with \ 3\frac{1}{2}(25 - x) \ cm^3 \ O_2 \end{array}$	
	• calculation of volume of methane (1)	$2x + 3\frac{1}{2}(25 - x) = 65$ x = 15 cm ³	
	 calculation of percentage of methane in mixture (1) 	$\frac{15}{25} \times 100 = 60\%$ TE on volume of methane Correct answer with no working scores (4) Ignore SF Allow alternative methods e.g. 1 ratio CH ₄ : O ₂ = 1 : 2 (1) / CH ₄ + 2O ₂ \rightarrow CO ₂ + 2H ₂ O ratio C ₂ H ₆ : O ₂ = 1 : 3.5 / 2 : 7 (1) / C ₂ H ₆ + 3½O ₂ \rightarrow 2CO ₂ + 3H ₂ O (n = fraction of CH4) 2n + 3.5(1 - n) = <u>65</u> / 2.6 (1) n = <u>0.9</u> / 0.6 so 60% methane (1) <u>15</u> e.g. 2 mol (CH ₄ + C ₂ H ₆) = <u>25</u> = 0.0010412/1.0412 × 10 ⁻³ (1) mol O ₂ = <u>65</u> = 0.0027083 / 2.7083 × 10 ⁻³ (1) ratio mol (CH ₄ + C ₂ H ₆) : mol O ₂ = 1 : 2.6 (1) so 60% methane (1)	

Question number	Answer	Additional guidance	Mark
23(b)	Step 1• potassium dichromate((VI)) and dilute sulfuric acid / acidified (potassium) dichromate((VI)) (and heat)• equation	Allow correct formulae for all reagents Allow any combination of structural and displayed formulae in equations or skeletal formulae Example of equation for Step 1:	(6)
		$\begin{array}{ccccccccc} H & H & OH & H \\ H & C & C & C & C \\ H & H & H & H \end{array} \xrightarrow{(O)} H + [O] \longrightarrow H & H & OH \\ H & C & C & C & C \\ H & H & H & H \end{array} \xrightarrow{(O)} H + [O] \xrightarrow{(O)} H (O$	
	Step 2	· · · · · · · · · · · · · · · · · · ·	
	 hydrogen cyanide and potassium cyanide / cyanide ions 	Reagents for Step 2 conditional on a carbonyl compound	
	or	Example of equation for Step 2:	
	potassium cyanide and (sulfuric) acid / hydrogen ions or potassium cyanide and pH 8-10 / alkali (1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	• equation (1)		
	 Step 3 lithium tetrahydridoaluminate((III)) / lithium aluminium hydride and 	Reagents for Step 3 conditional on a nitrile	
	dry ether / ethoxyethane (followed by a	Example of equation for Step 3:	
	dilute acid) or hydrogen and nickel / platinum / palladium or	$\begin{array}{ccccccc} H & H & OH & H & H & OH & H \\ & & & & \\ H - C - C - C - C - C - H + 4[H] \longrightarrow & H - C - C - C - C - H \\ & & & \\ H & H & CN & H & H & H & CH_2 & H \end{array}$	
	sodium and ethanol (1)	NH ₂	
	• equation (1)	Allow other correct balanced equations / 4[H] on arrow	

Question number	Answer	Additional guidance	Mark
24(a)(i)	 correct formula of iron(III) hydroxide (1) rest of equation correct, conditional on correct precipitate (1) 	Examples of equation: $\begin{aligned} & [Fe(H_2O)_6]^{3+} + 3NH_3 \rightarrow Fe(OH)_3 + 3H_2O + 3NH_4^+ \\ & \text{or} \\ & [Fe(H_2O)_6]^{3+} + 3NH_3 \rightarrow Fe(OH)_3(H_2O)_3 + 3NH_4^+ \\ & \text{Allow Fe}(H_2O)_3(OH)_3 \\ & \text{Ignore state symbols, even if incorrect} \end{aligned}$	(2)

Question number	Answer	Additional guidance	Mark
24(a)(ii)	 ligand exchange / ligand substitution / ligand displacement 	Allow ligand replacement Do not award ligand change / change in co-ordination number / redox / deprotonation in addition to correct answer	(1)

Question number	Answer	Additional guidance	Mark
24(a)(iii)		Example of diagram: $ \begin{bmatrix} H_2 \\ H_2 $	(2)
	• 6 bonds between N in diamines and Fe (1	Allow NH ₂ - Fe on left of structure	
	• rest of diagram correct (1	 Conditional on 6 N-Fe bonds Allow C₂H for CH₂, H₂N for NH₂ etc Allow displayed / skeletal formulae for ligands Ignore bond lengths and bond angles Ignore missing brackets and charge / 3+ on Fe Ignore lone pairs on N / arrows added to bonds unless pointing towards the nitrogen atoms Do not award two nitrogens from the molecule bonded at 180° to Fe ion 	

Question number	Answer	Additional guidance	Mark
24(b)(i)		Example of table:	(2)
	• any 2 colours (1)	Oxidation state of Colour of aqueous vanadium solution	
	• third colour (1)	+3 green +4 blue	
		+5 yellow or colourless	
		Ignore any further description of colour e.g. pale yellow	
		Do not award combined colours e.g. blue/green	

Question number	Answer	Additional guidance	Mark
24(b)(ii)	 it is not a redox reaction because the oxidation number of vanadium is (+)5 in both species 	Allow the oxidation number of vanadium remains the same if one oxidation number given - this may be shown by the equation	(1)
		Ignore 'there are no electrons in the equation' Ignore just 'the oxidation number of vanadium does not change'	
		Do not award reference to any atom oxidised or reduced	
		Do not award vanadium oxidation number is (+)5 in both species so it is a redox reaction	

Question number	Answer	Additional guidance	Mark
24(b)(iii)	An answer that makes reference to the following points:	Examples of equations: Allow multiples Ignore state symbols even if incorrect Ignore uncancelled H ⁺ / H ₂ O Penalise uncancelled electrons once only	(5)
	- equation for oxidation of V^{2+} to V^{3+}	(1) $NO_3^- + 2H^+ + V^{2+} \rightarrow NO_2 + H_2O + V^{3+}$ Allow $Cu^{2+} + V^{2+} \rightarrow Cu^+ + V^{3+}$ Allow $\frac{1}{2}Br_2 + V^{2+} \rightarrow Br^- + V^{3+}$	
	• E^{e}_{cell} for oxidation of V ²⁺ to V ³⁺	(1) $E_{cell}^{e} = (+)1.06 (V)$ TE on Cu ²⁺ / Br ₂ chosen as oxidising agent With Cu ²⁺ $E_{cell}^{e} = (+)0.41(0) (V)$ With Br ₂ $E_{cell}^{e} = (+)1.35 (V)$	
	• equation for oxidation of V^{3+} to VO^{2+}	(1) $NO_3^- + V^{3+} \rightarrow NO_2 + VO^{2+}$ Allow $\frac{1}{2}Br_2 + V^{3+} + H_2O \rightarrow Br^- + VO^{2+}$	+ 2H ⁺
	• E_{cell}^{e} for oxidation of V ³⁺ to VO ²⁺	1) $E_{cell}^{\Theta} = (+)0.46 (V)$ With Br ₂ $E_{cell}^{\Theta} = (+)0.75 (V)$	
	• VO^{2+} is not oxidised to VO_{2^+} / any further as E^{e}_{cell} is -0.2 (V negative) / Allow this shown in an equation (1)	

Question number	Answer		Additional guidance	Mark
*24(c)	is structured and shows lines of r The following table shows how th indicative content. Number of indicative	with linkages and fully sustained e content and for how the answer reasoning.	Guidance on how the mark scheme should be applied. The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)

	marks should be awarded for	3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning.
	Number of marks awarded for structure of answer and sustained lines of reasoning	
Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2	
Answer is partially structured with some linkages and lines of reasoning	1	
Answer has no linkages between points and is unstructured	0	
	marking points first, then	If there is any incorrect chemistry, deduct mark(s)
consider the mark for the structure line of reasoning.		If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s). e.g. iron catalysing formation of ammonia from nitrogen and hydrogen but naming it the Contact Process / incorrect formula e.g. for persulfate ions Allow correct formulae for names Do not award examples that are not transition metals, ions or compounds

•	IP1 Comparison - Activation energy both catalysts increase the rate of reaction by providing an alternative route / mechanism with a lower activation energy	Allow this shown on a Maxwell-Boltzmann distribution / reaction profile diagram
•	IP2 Phase a heterogeneous catalyst is in a different phase from the reactants and a homogeneous catalyst is in the same phase as the reactants / all solutions / gases	Allow (physical) state for phase Allow heterogeneous catalysts are easy to separate from the reaction mixture / reactants / products and homogeneous catalysts are difficult to separate from the reaction mixture / reactants / products
•	IP3 Example of heterogeneous example of a heterogeneous catalyst and reaction it catalyses e.g. iron and Haber Process, nickel and hydrogenation of alkenes, platinum in a catalytic converter / with CO and NO	
•	IP4 Example of homogeneous example of a homogeneous catalyst and reaction it catalyses e.g. iron(II) / iron(III) ions and reaction between iodide ions and persulfate ions	
•	IP5 Mechanism of heterogeneous reactant molecules are adsorbed onto the catalyst surface, the bonds are weakened, reaction takes place then the product molecules are desorbed	Allow e.g. reactant molecules bind to active sites for adsorbed / particles react for bonds weakened / product molecules leave for desorbed Allow vanadium(V) oxide reduced to vanadium(IV) and oxidised back to vanadium(V) for the Contact Process
•	IP6 Mechanism of homogeneous the transition metal ion is oxidised / reduced to a different oxidation state then changes back to the original oxidation state	Allow this shown in equations, even if unbalanced Allow donate / receive electrons for oxidised / reduced

Total for Section B = 50 marks

Section C			
Question number	Answer	Additional guidance	Mark
25(a)	correct equation	Example of equation: $2HoF_3 + 3Ca \rightarrow 2Ho + 3CaF_2$	(1)
		Allow multiples Ignore state symbols, even if incorrect	

Question number	Answer	Additional guidance	Mark
25(b)(i)	 there is extra stability associated with a half-filled (f-)subshell / one electron in each f orbital 	Allow 4f ⁷ is more stable than 4f ⁸ Allow to reduce the repulsion between paired electrons/ electron-electron repulsion (in orbitals) Do not award a half-filled f orbital	(1)

Question number	Answer	Additional guidance	Mark
25(b)(ii)	• ([Xe])4f ⁵	Allow 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ 4d ¹⁰ 5s ² 5p ⁶ 4f ⁵ Allow ([Xe])4f ⁵ 6s ⁰	(1)

Question number	Answer	Additional guidance	Mark
25(c)(i)	An explanation that makes reference to the following points:		(2)
	 thulium (ion)/Tm³⁺ has more protons (in the nucleus than cerium ion / Ce³⁺) (1) 	Allow Tm ³⁺ has a greater nuclear charge (than Ce ³⁺) Ignore references to increasing atomic number / charge density	
	EITHER • outer electrons are in the same (sub)shell OR so there will be a greater attraction between the nucleus / protons and the (outer) electrons / outer shell (1)	Allow f sub-shell Allow same / similar shielding	

Question number	Answer	Additional guidance	Mark
25(c)(ii)	 the lanthanide ions are larger than the transition metal ions (so there is space for more ligands) or there are more orbitals available to accept the lone pairs (from the ligands) 		(1)

Question number	Answer	Additional guidance	Mark
25(d)	 An explanation that makes reference to the following points: there are no f electrons in La³⁺ ions (1) 	Allow La ³⁺ has the same electronic configuration as Xe Allow no occupied f orbitals Allow f subshell / f orbital(s) are empty Ignore reference to numbers of electrons in other orbitals even if incorrect Do not award the difference in energy is outside the visible region Do not award the f-subshell does not split	(2)
	• so no f-f transitions can take place (1)	Stand alone mark	

Question number	Answer			Additional guidance						Mark
25(e)(i)			Example of calculation:						(3)	
					Ce	N	Н	0		
	•	calculation of moles of each element	(1)	moles	23.97	<u>19.18</u>	2.05	54.80		
					140	14	1	16		
					= 0.171	= 1.37	= 2.05	= 3.425		
				divide	<u>0.171</u>	<u>1.37</u>	2.05	<u>3.425</u>		
				by	0.171	0.171	0.171	0.171		
				smallest	= 1	= 8	= 12	= 20		
				Empirical						
	•	calculation of empirical formula	(1)	TE on mol	ratio from	M1				
	•	overall formula	(1)	Example of overall formula: $Ce(NH_4)_2(NO_3)_6.2H_2O$ or $Ce(NO_3)_4.(NH_4NO_3)_2.2H_2O$ or $Ce(NO_3)_4.2(NH_4NO_3).2H_2O$						
			TE on M2 Allow the ions in any order / charges shown by the ions / missing dot(s)					ons /		

uestion umber	Answer		Additional guidance	Mark
5(e)(ii)			Examples of structure of X:	(4)
	• identification of X	(1)	$CH_{3}-CH_{2}-CH_{2}-CH_{2}-CH_{3}$ or $CH_{3}-CH_{2}-CH_{3}$ $CH_{3}-CH_{2}-CH_{3}$ $CH_{3}-CH_{2}-CH_{3}$ $CH_{3}-CH_{2}-CH_{3}$ H Allow any unambiguous structure, including C ₂ H ₅	
			$/C_3H_7$ groups, displayed / skeletal formulae Ignore connectivity of OH except OH-C on left	
	Justification			
	 X is an alcohol as it gives a red colour with cerium(IV) ammonium nitrate 	(1)	Allow X is an alcohol as it has general formula C _n H _{2n+1} OH	
	• X is a tertiary alcohol / not a primary or a secondary alco as it does not react with acidified potassium dichromate(Ignore ketone	
	• X has 4 different groups attached to one carbon atom / has a chiral centre / carbon (atom)	(1)		

Question number	Answer	Additional guidance	Mark (5)	
25(f)	 calculation of amount of Ce⁴⁺ used 			Example of calculation: Amount of Ce ⁴⁺ used = $\frac{21.70 \times 0.100}{1000}$ = 0.00217 / = 2.17 x 10 ⁻³ (mol)
	• calculation of amount of 4-aminophenol in 25.0 cm ³	(1)	Amount of 4-aminophenol in 25 cm ³ = $\frac{0.00217}{2}$ = 0.001085 / = 1.085 x 10 ⁻³ (mol) TE on amount of Ce ⁴⁺ used	
	• calculation of amount of 4-aminophenol in 100 cm ³	(1)	Amount of 4-aminophenol in 100 cm ³ = = 0.001085 x 4 = 0.00434 / = 4.34 x 10 ⁻³ (mol) TE on amount of 4-aminophenol in 25 cm ³ Allow M3 and M2 in reverse order	
	• calculation of mass of paracetamol	(1)	(Amount paracetamol in tablet = amount of 4- aminophenol in 100 cm ³) Mass of paracetamol = 0.00434 x 151 = 0.65534 (g) TE on amount of 4-aminophenol in 100 cm ³	
	 calculation of percentage of paracetamol and answer given to 2 or 3SF 	nd		

(Total for Question 25 = 20 marks) Total for Section C = 20 marks Total for Paper = 90 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom